Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Вниз   Решение


Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
  а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
  б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.

ВверхВниз   Решение


В остроугольном треугольнике ABC  AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что
  а) сумма диаметров этих окружностей равна стороне BC.

  б)  

ВверхВниз   Решение


Правильный (4k+2)-угольник вписан в окружность радиуса R с центром O.
Докажите, что сумма длин отрезков, высекаемых углом   AkOAk+1 на прямых   A1A2k, A2A2k–1, ..., AkAk+1,  равна R.

ВверхВниз   Решение


Пусть p – простое число. Докажите, что  (a + b)pap + bp (mod p)  для любых целых a и b.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]      



Задача 30677  (#091)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Докажите, что  7120 – 1  делится на 143.

Прислать комментарий     Решение

Задача 30678  (#092)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Докажите, что число  30239 + 23930  составное.

Прислать комментарий     Решение

Задача 30679  (#093)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Пусть p – простое число. Докажите, что  (a + b)pap + bp (mod p)  для любых целых a и b.

Прислать комментарий     Решение

Задача 30680  (#094)

Темы:   [ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Сумма трёх чисел a, b и c делится на 30. Докажите, что  a5 + b5 + c5  также делится на 30.

Прислать комментарий     Решение

Задача 30681  (#095)

Тема:   [ Малая теорема Ферма ]
Сложность: 4-
Классы: 9,10

Пусть p и q – различные простые числа. Докажите, что
  а)  pq + qp ≡ p + q (mod pq);

  б)   – чётное число, если  p, q ≠ 2.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .