ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Теорема косинусов для тетраэдра.}Квадрат площади
каждой грани тетраэдра равен сумме квадратов площадей трёх остальных
граней без удвоенных попарных произведений площадей этих граней на
косинусы двугранных углов между ними, т.е.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел? Год проведения нынешнего математического праздника делится на его номер: 2006 : 17 = 118. Что больше: 20112011 + 20092009 или 20112009 + 20092011? Натуральные числа d и d' > d – делители натурального числа n. Докажите, что d' > d + d²/n. На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске? Среди комплексных чисел p , удовлетворяющих условию |p – 25i| ≤ 15, найти число с наименьшим аргументом. Найдите наибольшее значение выражения х + у, если Докажите, что В выпуклом четырёхугольнике ABCD углы B и D равны, CD = 4BC, а биссектриса угла A проходит через середину стороны CD. а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой? На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров? Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу? Докажите равенство: В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нём |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 55]
Переплетчик должен переплести 12 одинаковых книг в красный, зелёный или синий переплеты. Сколькими способами он может это сделать?
Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?
30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?
В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нём
Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 55]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке