Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n  у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
  а) Какие коробки следует купить при  n = 10  и  k = 3 ?
  б) Тот же вопрос для произвольных натуральных  n ≥ k.

Вниз   Решение


Теорема косинусов для тетраэдра.}Квадрат площади каждой грани тетраэдра равен сумме квадратов площадей трёх остальных граней без удвоенных попарных произведений площадей этих граней на косинусы двугранных углов между ними, т.е.

S20 = S21+S22+S23- 2S1S2 cos α12- 2S1S3 cos α13- 2S2S3 cos α23.

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

ВверхВниз   Решение


Год проведения нынешнего математического праздника делится на его номер:  2006 : 17 = 118.
  а) Назовите первый номер матпраздника, для которого это тоже было выполнено.
  б) Назовите последний номер матпраздника, для которого это тоже будет выполнено.

ВверхВниз   Решение


Что больше:  20112011 + 20092009  или  20112009 + 20092011?

ВверхВниз   Решение


Натуральные числа d и  d' > d  – делители натурального числа n. Докажите, что  d' > d + d²/n.

ВверхВниз   Решение


На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?

ВверхВниз   Решение


Среди комплексных чисел p , удовлетворяющих условию  |p – 25i| ≤ 15,  найти число с наименьшим аргументом.

ВверхВниз   Решение


Докажите, что  

ВверхВниз   Решение


Автор: Фольклор

Найдите наибольшее значение выражения  х + у,  если     x ∈ [0, /2],   y ∈ [π, 2π].

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD углы B и D равны,  CD = 4BC,  а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение  AD : AB?

ВверхВниз   Решение


а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

ВверхВниз   Решение


Автор: Храмцов Д.

На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?

ВверхВниз   Решение


Докажите равенство:  
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

ВверхВниз   Решение


Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

ВверхВниз   Решение


В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нём
  а) 12 открыток;
  б) 8 открыток;
  в) 8 различных открыток?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 55]      



Задача 30721  (#035)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

Переплетчик должен переплести 12 одинаковых книг в красный, зелёный или синий переплеты. Сколькими способами он может это сделать?

Прислать комментарий     Решение

Задача 30722  (#036)

Тема:   [ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?

Прислать комментарий     Решение

Задача 30723  (#037)

Тема:   [ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?

Прислать комментарий     Решение

Задача 30724  (#038)

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 8,9

В почтовом отделении продаются открытки 10 видов. Сколькими способами можно купить в нём
  а) 12 открыток;
  б) 8 открыток;
  в) 8 различных открыток?

Прислать комментарий     Решение

Задача 30725  (#039)

Темы:   [ Правило произведения ]
[ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9

Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
  а) Сколькими способами могут выйти пассажиры на этих остановках?
  б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .