|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ точка $M$ – середина меньшей дуги $BC$ описанной окружности. Окружность $\omega$ касается сторон $AB$, $AC$ в точках $P$, $Q$ соответственно и проходит через точку $M$. Докажите,что $BP+CQ=PQ$. Натуральное число n таково, что 3n + 1 и 10n + 1 являются квадратами натуральных чисел. Докажите, что число 29n + 11 – составное. Доказать, что из 5 попарно различных по величине квадратов нельзя сложить прямоугольник. На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]
Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.
Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.
Можно ли составить решётку, изображённую на рисунке
На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|