ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку? а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Дан треугольник ABC и точки X, Y, не лежащие на его описанной окружности Ω. Пусть A1, B1, C1 – проекции X на BC, CA, AB, а A2, B2, C2 – проекции Y. Докажите, что перпендикуляры, опущенные из A1, B1, C1 на, соответственно, B2C2, C2A2, A2B2, пересекаются в одной точке тогда и только тогда, когда прямая XY проходит через центр Ω. Точки A и B лежат на диаметре данной окружности.
Проведите через них две равные хорды с общим концом.
Сумма двух цифр a и b делится на 7. Докажите, что число aba также делится на 7. а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника.
Докажите, что для монотонно возрастающей функции f (x)
уравнения x = f (f (x)) и x = f (x) равносильны.
Как и раньше загадывается число от 1 до
200, а загадавший отвечает на вопросы ``да'' или ``
нет''. При этом ровно один раз (за все ответы) он имеет право
соврать. Сколько теперь понадобится вопросов, чтобы отгадать
задуманное число?
В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать? Докажите, что среди чисел [2k На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]
Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.
Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.
Можно ли составить решётку, изображённую на рисунке
На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке