|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах? На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
Доказать, что связный граф можно обойти, проходя по каждому ребру дважды.
а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
Доказать, что
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|