ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи 12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих? a ≡ 68 (mod 1967), a ≡ 69 (mod 1968). Найти остаток от деления a на 14. Доказать, что при чётном n 20n + 16n – 3n – 1 делится на 323.
12 команд сыграли турнир по волейболу в один круг. Две команды одержали ровно по 7 побед. Имеются две одинаковых шестеренки по 14 зубьев на общей оси. Их совместили и выбили четыре пары зубьев. Доказать, что для любого n 1/81 (10n – 1) – n/9 – целое число. 30 команд сыграли турнир по олимпийской системе. Сколько всего было сыграно матчей? Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B. Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд. Сколько решений в натуральных числах имеет уравнение [x/10] = [x/11] + 1? Докажите, что множество простых чисел вида p = 6k + 5 бесконечно. Несколько человек стоят прямоугольником. В каждой шеренге выбрали самого нижнего, в каждом ряду самого высокого. Кто выше: самый низкий из высоких или самый высокий из низких?
Найти остаток 1316 – 255·515 от деления на 3. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Найти остаток 1316 – 255·515 от деления на 3.
Доказать, что 776776 + 777777 + 778778 делится на 3.
Найти остаток 418 + 517 от деления на 3.
Найти остаток (116 + 1717)21·749 от деления на 8.
Доказать, что для любого n
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке