Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).

Вниз   Решение


Докажите, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон с вписанной окружностью, пересекаются в одной точке.

ВверхВниз   Решение


Точки A, B, C, D, E, F лежат на одной окружности. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (Паскаль).

ВверхВниз   Решение


а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ $ \geq$ $ \sqrt{3}$;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) $ \geq$ $ \sqrt{3}$.

ВверхВниз   Решение


а) Прямые l1 и l2 параллельны. Докажите, что Sl1oSl2 = T2a, где  Ta — параллельный перенос, переводящий l1 в l2, причем a $ \perp$ l1.
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2$\scriptstyle \alpha$O, где  R$\scriptstyle \alpha$O — поворот, переводящий l1 в l2.

ВверхВниз   Решение


Докажите, что если     при  n = 2, ..., 10,  то  

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
sin 2$ \alpha$ + sin 2$ \beta$ + sin 2$ \gamma$ = 4 sin$ \alpha$sin$ \beta$sin$ \gamma$.

ВверхВниз   Решение


Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


ВверхВниз   Решение


Доказать, что
  а) Степень двойки не может оканчиваться на четыре одинаковых цифры.
  б) Квадрат не может состоять из одинаковых цифр (если он не однозначный).
  в) Квадрат не может оканчиваться на четыре одинаковых цифры.

ВверхВниз   Решение


На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2. Докажите, что если окружности, описанные около треугольников A1B1C1, A1B2C2, A2B1C2, A2B2C1, проходят через одну точку, то и окружности, описанные около треугольников A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через одну точку.

ВверхВниз   Решение


а)  cos2$ \alpha$ + cos2$ \beta$ + cos2$ \gamma$ $ \geq$ 3/4.
б) Для тупоугольного треугольника

cos2$\displaystyle \alpha$ + cos2$\displaystyle \beta$ + cos2$\displaystyle \gamma$ > 1.


ВверхВниз   Решение


Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

ВверхВниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  cos 2$ \alpha$ + cos 2$ \beta$ + cos 2$ \gamma$ + 4 cos$ \alpha$cos$ \beta$cos$ \gamma$ + 1 = 0;
б)  cos2$ \alpha$ + cos2$ \beta$ + cos2$ \gamma$ + 2 cos$ \alpha$cos$ \beta$cos$ \gamma$ = 1.
в) cos 2$ \alpha$ + cos 2$ \beta$ + cos 2$ \gamma$ = $ {\frac{OH^2}{2R^2}}$ - $ {\frac{3}{2}}$, где O — центр описанной окружности, H — точка пересечения высот.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg$ \alpha$ctg$ \beta$ + ctg$ \beta$ctg$ \gamma$ + ctg$ \alpha$ctg$ \gamma$ = 1;
б)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ - ctg$ \alpha$ctg$ \beta$ctg$ \gamma$ = 1/(sin$ \alpha$sin$ \beta$sin$ \gamma$).

ВверхВниз   Решение


Докажите, что при повороте на угол $ \alpha$ с центром в начале координат точка с координатами (x, y) переходит в точку

(x cos$\displaystyle \alpha$ - y sin$\displaystyle \alpha$x sin$\displaystyle \alpha$ + y cos$\displaystyle \alpha$).


ВверхВниз   Решение


Докажите, что для двух непересекающихся окружностей R1 и R2 цепочка из n касающихся окружностей (см. предыдущую задачу) существует тогда и только тогда, когда угол между окружностями T1 и T2, касающимися R1 и R2 в точках их пересечения с прямой, соединяющей центры, равен целому кратному угла 360o/n (рис.).


ВверхВниз   Решение


а)  cos$ \alpha$cos$ \beta$ + cos$ \beta$cos$ \gamma$ + cos$ \gamma$cos$ \alpha$ $ \leq$ 3/4.

ВверхВниз   Решение


Используя проективные преобразования прямой, решите задачу о бабочке (задача 30.44).

ВверхВниз   Решение


Доказать, что  n³ + 5n  делится на 6 при любом целом n.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 60289  (#01.016)

Тема:   [ Рекуррентные соотношения ]
Сложность: 3
Классы: 8,9,10

Числа a0, a1,..., an,... определены следующим образом:

a0 = 2,    a1 = 3,        an + 1 = 3an - 2an - 1        (n $\displaystyle \geqslant$ 2).

Найдите и докажите формулу для этих чисел.

Прислать комментарий     Решение

Задача 60290  (#01.017)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 9,10

Докажите, что для любого натурального n  10n + 18n – 1  делится на 27.

Прислать комментарий     Решение

Задача 30607  (#01.018)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  11n+2 + 122n+1  делится на 133 при любом натуральном n.

Прислать комментарий     Решение

Задача 60292  (#01.019)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для любого натурального n  25n+3 + 5n·3n+2  делится на 17.

Прислать комментарий     Решение

Задача 31250  (#01.020)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  n³ + 5n  делится на 6 при любом целом n.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .