ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
Дан угол XAY. Концы B и C отрезков BO и CO длиной 1
перемещаются по лучам AX и AY. Постройте четырехугольник ABOC
наибольшей площади.
Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков. Дан угол XAY и точка O внутри его. Проведите через точку O
прямую, отсекающую от данного угла треугольник наименьшей площади.
Доказать, что n³ + 5n делится на 6 при любом целом n. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
Докажите, что 11n+2 + 122n+1 делится на 133 при любом натуральном n.
Докажите, что для любого натурального n 25n+3 + 5n·3n+2 делится на 17.
Доказать, что n³ + 5n делится на 6 при любом целом n.
Докажите, что для любого натурального n 62n+1 + 1 делится на 7.
Докажите, что для любого натурального n число 32n+2 + 8n – 9 делится на 16.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке