ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Показать, что 271958 – 108878 + 101528 делится на 26460. На плоскости дано несколько правильных n-угольников. Докажите,
что выпуклая оболочка их вершин имеет не менее n углов.
На плоскости лежат две одинаковые буквы Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные. Имеется пять звеньев цепи по 3 кольца в каждом. Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь? Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
M1, M2,..., M6 — середины сторон выпуклого
шестиугольника
A1A2...A6. Докажите, что существует
треугольник, стороны которого равны и параллельны отрезкам M1M2,
M3M4, M5M6.
Докажите, что в игре в "крестики-нолики" на поле 3*3 при правильной игре первого игрока второй игрок выиграть не сможет. |
Страница: 1 [Всего задач: 5]
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга?
а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и
g2. Можно ли то, что осталось, замостить доминошками 1 на 2?
В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх по диагонали. Выигрывает тот, кто поставит фишку в правый верхний угол. Кто победит при правильной игре?
Докажите, что в игре в "крестики-нолики" на поле 3*3 при правильной игре первого игрока второй игрок выиграть не сможет.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке