Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если  BC = 12.

Вниз   Решение


Восстановите цифры. Восстановите цифры в следующем примере на деление


ВверхВниз   Решение


Докажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20.  33 богатыря передают листок друг другу, и каждый или прибавляет к числу, или отнимает от него единицу. Может ли в результате получиться число 10?

ВверхВниз   Решение


Доказать, что  (1 + ⅓)(1 + ⅛)(1 + 1/15)...(1 + 1/n²+2n) < 2  при любом натуральном n.

Вверх   Решение

Задачи

Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 7526]      



Задача 35271

Темы:   [ Тождественные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что  (1 + ⅓)(1 + ⅛)(1 + 1/15)...(1 + 1/n²+2n) < 2  при любом натуральном n.

Прислать комментарий     Решение

Задача 35291

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Известно, что улитка двигалась таким образом, что за каждый промежуток времени в одну минуту она проползала 1 метр.
Можно ли отсюда сделать вывод, что она двигалась равномерно?

Прислать комментарий     Решение

Задача 35295

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 8,9,10

На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.

Прислать комментарий     Решение

Задача 35300

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что уравнение  m² + n² = 1980  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 35302

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10

Доказать, что уравнение  19x² – 76y² = 1976  не имеет решений в целых числах.

Прислать комментарий     Решение

Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .