ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти все целые натуральные решения уравнения (n + 2)! – (n + 1)! – n! = n2 + n4. |
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 7526]
Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Обозначим через dk количество таких домов в Москве, в которых живет не меньше k жителей, и через cm - количество жителей в m-ом по величине населения доме. Докажите равенство c1+c2+c3+... = d1+d2+d3+... .
На клетчатой бумаге отмечены произвольным образом 2000 клеток. Докажите, что среди них всегда можно выбрать не менее 500 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).
Найти наименьшее значение дроби
Найти все целые натуральные решения уравнения (n + 2)! – (n + 1)! – n! = n2 + n4.
Страница: << 105 106 107 108 109 110 111 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке