Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?

Вниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

ВверхВниз   Решение


С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1.

ВверхВниз   Решение


Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

ВверхВниз   Решение


Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

ВверхВниз   Решение


Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

Вверх   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 7526]      



Задача 53338

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются под прямым углом и  AC = AD.  Докажите, что  BC = BD  и  ∠ACB = ∠ADB.

Прислать комментарий     Решение

Задача 53340

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

Даны два треугольника: ABC и A1B1C1. Известно, что  AB = A1B1AC = A1C1,  ∠A = ∠A1.  На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что  AK = A1K1LC = L1C1.  Докажите, что  KL = K1L1  и  AL = A1L1.

Прислать комментарий     Решение

Задача 53372

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC и углом при вершине B, равным 36°, проведена биссектриса AD.
Докажите, что треугольники CDA и ADB равнобедренные.

Прислать комментарий     Решение

Задача 53373

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

Прислать комментарий     Решение

Задача 53376

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 2+
Классы: 8,9

Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .