ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике известны углы A, B, C. Найдите углы шести треугольников, на которые данный треугольник разбивается его биссектрисами.

   Решение

Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 7526]      



Задача 53387

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Дан угол с вершиной A. От точки A отложен на стороне отрезок AB; из точки B проведена прямая, параллельная второй стороне данного угла; на этой прямой отложен внутри угла отрезок BD, равный BA. Докажите, что прямая AD делит данный угол пополам.

Прислать комментарий     Решение

Задача 53394

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
Сложность: 3-
Классы: 8,9

В треугольнике известны углы A, B, C. Найдите углы шести треугольников, на которые данный треугольник разбивается его биссектрисами.

Прислать комментарий     Решение

Задача 53399

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3-
Классы: 8,9

Прямая, проведённая через вершину A треугольника ABC перпендикулярно его медиане BD, делит эту медиану пополам.
Найдите отношение сторон AB и AC.

Прислать комментарий     Решение

Задача 53408

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Две высоты треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 53423

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3-
Классы: 8,9

Точки A и D лежат на одной из двух параллельных прямых, точки B и C – на другой, причём прямые AB и CD также параллельны.
Докажите, что противоположные углы четырёхугольника ABCD равны между собой.

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .