ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что ∠PXB = ∠QXC, где X – середина основания BC. Две окружности касаются внешним образом. Прямая, проведённая через точку касания, образует в окружностях хорды, одна из которых равна 13/5 другой. Найдите радиусы окружностей, если расстояние между центрами равно 36. В равнобедренном треугольнике ABC сторона AC = b, стороны BA = BC = a, AM и CN – биссектрисы углов A и C. Найдите MN. Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность. Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл? Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO. Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег. Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика? AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём AM = MD. Докажите, что MD || AC. |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 6702]
Докажите, что прямая, пересекающая одну из двух параллельных прямых, пересекает и другую.
Внешние углы треугольника ABC при вершинах A и C равны 115° и 140°. Прямая, параллельная прямой AC пересекает стороны AB и AC в точках M и N.
Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что ∠ACB = 50°, а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC.
Докажите, что расстояние от каждой точки одной из двух параллельных прямых до второй прямой одно и то же.
AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём AM = MD. Докажите, что MD || AC.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке