Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 6702]
В равнобедренной трапеции ABCD основание AD равно a,
основание BC равно b, AB = d. Через вершину B проведена прямая, делящая пополам диагональ AC и пересекающая прямую AD в точке K. Найдите площадь треугольника BDK.
В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB.
Продолжения боковых сторон AB и DC пересекаются в точке K,
образуя треугольник AKD с углом 45° при вершине K. Площадь
трапеции ABCD равна P. Найдите площадь треугольника AKD.
В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB.
На продолжениях боковых сторон AB и DC за меньшее основание BC отложены отрезки BM и CN так, что получается новая трапеция BMNC, подобная трапеции ABCD. Найдите площадь трапеции ABCD, если площадь трапеции AMND равна S, а сумма углов CAD и BDA равна 60°.
Медиана, проведённая к гипотенузе прямоугольного треугольника, равна m и делит прямой угол в отношении 1 : 2. Найдите стороны треугольника.
Параллелограмм с периметром, равным 44, разделен диагоналями на четыре треугольника. Разность между периметрами двух смежных треугольников
равна 6. Найдите стороны параллелограмма.
Страница:
<< 133 134 135 136
137 138 139 >> [Всего задач: 6702]