ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Остроугольный равнобедренный треугольник и трапеция вписаны в окружность. Одно основание трапеции является диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Найдите отношение площадей трапеции и треугольника.

   Решение

Задачи

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 6702]      



Задача 53672

Темы:   [ Пересекающиеся окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружности с центрами O1 и O2 пересекаются в точках A и B . Известно, что AO1B= 90o , AO2B = 60o , O1O2=a . Найдите радиусы окружностей.
Прислать комментарий     Решение


Задача 53694

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Возможно ли, чтобы одна биссектриса треугольника делила пополам другую биссектрису?

Прислать комментарий     Решение

Задача 53695

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

Прислать комментарий     Решение

Задача 53698

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53707

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь трапеции ]
[ Площадь четырехугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Остроугольный равнобедренный треугольник и трапеция вписаны в окружность. Одно основание трапеции является диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Найдите отношение площадей трапеции и треугольника.

Прислать комментарий     Решение

Страница: << 138 139 140 141 142 143 144 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .