ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC.

   Решение

Задачи

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 6702]      



Задача 53712

Темы:   [ Признаки и свойства касательной ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC.

Прислать комментарий     Решение

Задача 53738

Темы:   [ Признаки подобия ]
[ Перенос стороны, диагонали и т.п. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Боковая сторона AB трапеции ABCD разделена на пять равных частей, и через третью точку деления, считая от точки B, проведена прямая, параллельная основаниям BC и AD. Найдите отрезок этой прямой, заключённый между сторонами трапеции, если  BC = a  и  AD = b.

Прислать комментарий     Решение

Задача 53744

Тема:   [ Подобные треугольники ]
Сложность: 3
Классы: 8,9

В треугольнике ABC, стороны которого a, b и c даны, проведена параллельно AC прямая MN так, что  AM = BN.  Найдите MN.

Прислать комментарий     Решение

Задача 53745

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

Докажите, что биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

Прислать комментарий     Решение

Задача 53750

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC сторона  AC = b,  стороны  BA = BC = aAM и CN – биссектрисы углов A и C. Найдите MN.

Прислать комментарий     Решение

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .