ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что ∠AB2C = ∠AC2B = 90°. Докажите, что AB2 = AC2. а) На сторонах BC, CA и AB треугольника ABC
(или на их продолжениях) взяты точки A1, B1 и C1, отличные
от вершин треугольника. Докажите, что описанные окружности
треугольников
AB1C1, A1BC1 и A1B1C пересекаются
в одной точке.
Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других. Даны диаметр AB окружности и точка C, не лежащая
на прямой AB. С помощью одной линейки (без циркуля)
опустите перпендикуляр из точки C на AB, если:
а) точка C не лежит на окружности;
б) точка C лежит на окружности.
На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны. Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел. Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой. |
Страница: 1 2 >> [Всего задач: 9]
В трапеции точка пересечения диагоналей равноудалена от прямых, на
которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
Медианы AA1, BB1 и CC1 треугольника ABC
пересекаются в точке M; P — произвольная точка. Прямая la
проходит через точку A параллельно прямой PA1; прямые lb
и lc определяются аналогично. Докажите, что:
Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.
Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.
Окружность S касается равных сторон AB и BC
равнобедренного треугольника ABC в точках P и K, а также
касается внутренним образом описанной окружности треугольника ABC.
Докажите, что середина отрезка PK является
центром вписанной окружности треугольника ABC.
Страница: 1 2 >> [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке