Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Найдите наименьшее натуральное n, для которого существует такое m, что  

Вниз   Решение


Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.

ВверхВниз   Решение


Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?

ВверхВниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом.

Вверх   Решение

Задачи

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 6702]      



Задача 53921

Темы:   [ Диаметр, хорды и секущие ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними.

Прислать комментарий     Решение

Задача 53925

Тема:   [ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом.

Прислать комментарий     Решение

Задача 53933

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

Прислать комментарий     Решение

Задача 53934

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 53948

Темы:   [ Метод ГМТ ]
[ Биссектриса угла (ГМТ) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.

Прислать комментарий     Решение

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .