ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC.

   Решение

Задачи

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 6702]      



Задача 54143

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC.

Прислать комментарий     Решение

Задача 54155

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектрисы углов при одном основании трапеции пересекаются на другом её основании. Докажите, что второе основание равно сумме боковых сторон.

Прислать комментарий     Решение

Задача 54181

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Стороны треугольника равны 10, 17, и 21. Найдите высоту, проведённую к большей стороне.

Прислать комментарий     Решение

Задача 54190

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перенос стороны, диагонали и т.п. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Основания прямоугольной трапеции равны 6 и 8. Один из углов при меньшем основании равен 120°. Найдите диагонали трапеции.

Прислать комментарий     Решение

Задача 54192

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Высота параллелограмма, проведённая из вершины тупого угла, равна a и делит сторону пополам. Острый угол параллелограмма равен 30°.
Найдите диагонали параллелограмма.

Прислать комментарий     Решение

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .