ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Катет прямоугольного треугольника равен 2, а противолежащий ему угол равен 30°. Найдите расстояние между центрами окружностей, вписанных в треугольники, на которые данный треугольник делится медианой, проведённой из вершины прямого угла.

   Решение

Задачи

Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 6702]      



Задача 54221

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

Косинус угла при основании равнобедренного треугольника равен 3/5, высота, опущенная на основание, равна h.
Найдите высоту, опущенную на боковую сторону.

Прислать комментарий     Решение

Задача 54222

Темы:   [ Правильный (равносторонний) треугольник ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Вершины M и N равностороннего треугольника BMN лежат соответственно на сторонах AD и CD квадрата ABCD со стороной, равной a . Найдите MN .
Прислать комментарий     Решение


Задача 54226

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9

На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b.
Найдите основание треугольника.

Прислать комментарий     Решение

Задача 54230

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Катет прямоугольного треугольника равен 2, а противолежащий ему угол равен 30°. Найдите расстояние между центрами окружностей, вписанных в треугольники, на которые данный треугольник делится медианой, проведённой из вершины прямого угла.

Прислать комментарий     Решение

Задача 54236

Темы:   [ Параллелограмм Вариньона ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника, равны между собой. Найдите площадь четырёхугольника, если его диагонали равны 8 и 12.
Прислать комментарий     Решение


Страница: << 154 155 156 157 158 159 160 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .