ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



Задача 108982

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 3-
Классы: 7,8

Два совершенно одинаковых катера, имеющих одинаковую скорость в стоячей воде, проходят по двум различным рекам одинаковое расстояние (по течению) и возвращаются обратно (против течения). В какой реке на эту поездку потребуется больше времени: в реке с быстрым течением или в реке с медленным течением?

Прислать комментарий     Решение

Задача 109185

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3-
Классы: 7,8,9

Доказать, что сумма цифр квадрата любого числа не может быть равна 1967.

Прислать комментарий     Решение

Задача 30303

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 6,7

На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Прислать комментарий     Решение

Задача 54646

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ НОД и НОК. Взаимная простота ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 60279

Темы:   [ Индукция (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .