Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Можно ли расставить на футбольном поле четырёх футболистов так, чтобы попарные расстояния между ними равнялись 1, 2, 3, 4, 5 и 6 метров?

Вниз   Решение


Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.

ВверхВниз   Решение


Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

ВверхВниз   Решение


В равнобедренном треугольнике радиус вписанной окружности составляет 2/7 высоты, а периметр этого треугольника равен 56. Найдите его стороны.

ВверхВниз   Решение


Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел.

ВверхВниз   Решение


Доказать, что в последовательности 11, 111, 1111, 11111, ... нет точных квадратов.

ВверхВниз   Решение


В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты CC1 и AA1. Известно, что  AC = 1  и  ∠C1CA1 = α.
Найдите площадь круга, описанного около треугольника C1BA1.

Вверх   Решение

Задачи

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 6702]      



Задача 54805

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 3.
Найдите площадь прямоугольника.

Прислать комментарий     Решение

Задача 54814

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты CC1 и AA1. Известно, что  AC = 1  и  ∠C1CA1 = α.
Найдите площадь круга, описанного около треугольника C1BA1.

Прислать комментарий     Решение

Задача 54831

Темы:   [ Угол между касательной и хордой ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD диагонали AC и BD перпендикулярны и пересекаются в точке P . Длина отрезка, соединяющего вершину C с точкой M , являющейся серединой отрезка AD , равна . Расстояние от точки P до отрезка BC равно и AP = 1 . Найдите AD , если известно, что вокруг четырёхугольника ABCD можно описать окружность.
Прислать комментарий     Решение


Задача 54836

Темы:   [ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

У треугольника известны стороны  a = 2,  b = 3  и площадь  S = .  Медиана, проведённая к его третьей стороне, меньше её половины.
Найдите радиус описанной окружности этого треугольника .

Прислать комментарий     Решение

Задача 54843

Темы:   [ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность, центр которой лежит на гипотенузе AB прямоугольного треугольника ABC, касается двух катетов AC и BC соответственно в точках E и D.
Найдите угол ABC, если известно, что  AE = 1,  BD = 3.

Прислать комментарий     Решение

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .