ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка M делит сторону AB треугольника ABC в отношении 2 : 5. В каком отношении отрезок CM делит площадь треугольника ABC?

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 6702]      



Задача 54696

Темы:   [ Теорема косинусов ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 8,9

Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

Прислать комментарий     Решение


Задача 54709

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Стороны параллелограмма равны 2 и 4, а угол между ними равен 60o. Через вершину этого угла проведены прямые, проходящие через середины двух других сторон параллелограмма. Найдите косинус угла между этими прямыми.

Прислать комментарий     Решение


Задача 54781

Темы:   [ Признаки и свойства касательной ]
[ Концентрические окружности ]
Сложность: 3-
Классы: 8,9

Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.

Прислать комментарий     Решение


Задача 54944

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3-
Классы: 8,9

Точка M делит сторону AB треугольника ABC в отношении 2 : 5. В каком отношении отрезок CM делит площадь треугольника ABC?

Прислать комментарий     Решение


Задача 55124

Темы:   [ Средняя линия треугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3-
Классы: 8,9

Три средних линии треугольника разбивают его на четыре части. Площадь одной из них равна S. Найдите площадь данного треугольника.

Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .