ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольном треугольнике на гипотенузе AB от вершины A отложим отрезок AD, равный катету AC, а от вершины B - отрезок BE, равный катету BC. Докажите, что длина отрезка DE равна диаметру окружности, вписанной в треугольник ABC.

   Решение

Задачи

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 7526]      



Задача 55365

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3
Классы: 8,9

Точка M делит сторону BC треугольника ABC в отношении BM : MC = 2 : 5, Известно, что $ \overrightarrow{AB} $ = $ \overrightarrow{a}$, $ \overrightarrow{AC} $ = $ \overrightarrow{b}$. Найдите вектор $ \overrightarrow{AM}$.

Прислать комментарий     Решение


Задача 55507

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Даны две параллельные прямые на расстоянии, равном 15, одна от другой; между ними дана точка M на расстоянии, равном 3, от одной из них. Через точку M проведена окружность, касающаяся обеих прямых. Найдите расстояние между проекциями центра и точки M на одну из данных прямых.

Прислать комментарий     Решение


Задача 55534

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике на гипотенузе AB от вершины A отложим отрезок AD, равный катету AC, а от вершины B - отрезок BE, равный катету BC. Докажите, что длина отрезка DE равна диаметру окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 55554

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Пусть M и N — середины оснований трапеции. Докажите, что если прямая MN перпендикулярна основаниям, то трапеция — равнобедренная.

Прислать комментарий     Решение


Задача 55572

Темы:   [ Необычные построения ]
[ Необычные построения (прочее) ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

На прозрачной бумаге дана дуга некоторой окружности. Постройте без всяких инструментов центр этой окружности.

Прислать комментарий     Решение


Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .