ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC высота AH равна медиане BM.
Найдите угол MBC.
а) Диагонали выпуклого четырехугольника ABCD
пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP.
Найдите площадь треугольника ADP.
|
Страница: 1 [Всего задач: 4]
Диагонали четырехугольника ABCD пересекаются
в точке O. Докажите, что
SAOB = SCOD тогда и только тогда,
когда
BC || AD.
а) Диагонали выпуклого четырехугольника ABCD
пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP.
Найдите площадь треугольника ADP.
Диагонали четырехугольника ABCD пересекаются
в точке P, причем
SABP2 + SCDP2 = SBCP2 + SADP2.
Докажите, что P — середина одной из диагоналей.
В выпуклом четырехугольнике ABCD существуют
три внутренние точки
P1, P2, P3, не лежащие на одной
прямой и обладающие тем свойством, что сумма площадей
треугольников ABPi и CDPi равна сумме площадей
треугольников BCPi и ADPi для i = 1, 2, 3. Докажите, что ABCD — параллелограмм.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке