Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Диагонали четырехугольника ABCD пересекаются в точке P. Расстояния от точек A, B и P до прямой CD равны a, b и p. Докажите, что площадь четырехугольника ABCD равна  ab . CD/2p.

Вниз   Решение



Существует ли такое число n , что числа
  а)  n – 96,  n,  n + 96;
  б)  n – 1996,  n,  n + 1996
простые? (Все простые числа считаем положительными.)

ВверхВниз   Решение


Точки K, L, M и N лежат на сторонах AB, BC, CD и DA параллелограмма ABCD, причем отрезки KM и LN параллельны сторонам параллелограмма. Эти отрезки пересекаются в точке O. Докажите, что площади параллелограммов KBLO и MDNO равны тогда и только тогда, когда точка O лежит на диагонали AC.

ВверхВниз   Решение


Внутри сектора AOB круга радиуса R = AO = BO лежит отрезок MN. Докажите, что MN $ \leq$ R или MN $ \leq$ AB. (Предполагается, что  $ \angle$AOB < 180o.)

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC внешним образом построены параллелограммы; P — точка пересечения продолжений их сторон, параллельных AB и BC. На стороне AC построен параллелограмм, вторая сторона которого равна и параллельна BP. Докажите, что его площадь равна сумме площадей первых двух параллелограммов.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 56776

Тема:   [ Площадь (прочее) ]
Сложность: 3
Классы: 9

Даны параллелограмм ABCD и некоторая точка M. Докажите, что  SACM = | SABM±SADM|.
Прислать комментарий     Решение


Задача 56777

Тема:   [ Площадь (прочее) ]
Сложность: 3
Классы: 9

На сторонах AB и BC треугольника ABC внешним образом построены параллелограммы; P — точка пересечения продолжений их сторон, параллельных AB и BC. На стороне AC построен параллелограмм, вторая сторона которого равна и параллельна BP. Докажите, что его площадь равна сумме площадей первых двух параллелограммов.
Прислать комментарий     Решение


Задача 111658

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Правильные многоугольники ]
[ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

Прислать комментарий     Решение

Задача 56779

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

Продолжения сторон AD и BC выпуклого четырехугольника ABCD пересекаются в точке OM и N — середины сторон AB и CDP и Q — середины диагоналей AC и BD. Докажите, что:
а)  SPMQN = | SABD - SACD|/2;
б)  SOPQ = SABCD/4.
Прислать комментарий     Решение


Задача 56780

Тема:   [ Площадь (прочее) ]
Сложность: 5
Классы: 9

На сторонах AB и CD выпуклого четырехугольника ABCD взяты точки E и F. Пусть K, L, M и N — середины отрезков DE, BF, CE и AF. Докажите, что четырехугольник KLMN выпуклый и его площадь не зависит от выбора точек E и F.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .