ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри треугольника ABC взята такая точка P, что
|
Страница: 1 2 3 4 >> [Всего задач: 17]
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем
AC1 = AB1, BA1 = BC1 и CA1 = CB1.
Докажите, что A1, B1 и C1 — точки касания вписанной
окружности со сторонами.
Пусть Oa, Ob и Oc — центры вневписанных
окружностей треугольника ABC. Докажите, что точки A, B и C — основания высот треугольника OaObOc.
Докажите, что сторона BC треугольника ABC видна из
центра O вписанной окружности под углом
90o +
Докажите, что точки, симметричные точке пересечения
высот треугольника ABC относительно его сторон, лежат
на описанной окружности.
Внутри треугольника ABC взята такая точка P, что
Страница: 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке