ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы. Как надо расположить числа 1, 2, ..., 2n в последовательности a1, a2, ..., a2n, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a2n–1 – a2n| + |a2n – a1| была наибольшей? Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку? Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали. Правильный треугольник, одна сторона которого отмечена, отражается симметрично относительно одной из своих сторон. Полученный треугольник в свою очередь отражается и т.д., пока на некотором шаге треугольник не придёт в первоначальное положение. Доказать, что при этом отмеченная сторона также займёт исходное положение. Существует ли такое натуральное n, что n² + n + 1 делится на 1955? Точка O лежит внутри выпуклого n-угольника A1...An и соединена отрезками с вершинами. Стороны n-угольника нумеруются числами от 1 до n, разные стороны нумеруются разными числами. То же самое делается с отрезками OA1, ..., OAn. Даны n карточек; на обеих сторонах каждой карточки написано по одному из чисел 1, 2,..., n, причём так, что каждое число встречается на всех n карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа: 1, 2,..., n. Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке. |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°.
Через точку O пересечения биссектрис треугольника ABC проведены прямые, параллельные его сторонам. Прямая, параллельная AB, пересекает AC и BC в точках M и N, а прямые, параллельные AC и BC, пересекают AB в точках P и Q. Докажите, что MN = AM + BN и периметр треугольника OPQ равен длине отрезка AB.
На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём α + β + γ = 60°. Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.
а) Докажите, что высоты треугольника пересекаются в одной точке.
Страница: 1 2 3 4 5 >> [Всего задач: 21]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке