Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Вниз   Решение


Даны два треугольника ABC и A1B1C1. Перпендикуляры, опущенные из точек A, B, C на прямые B1C1, C1A1, A1B1 пересекаются в одной точке. Докажите, что тогда перпендикуляры, опущенные из точек A1, B1, C1 на прямые BC, CA, AB тоже пересекаются в одной точке (Штейнер).

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 56954

Темы:   [ Подерный (педальный) треугольник ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9

а) Точки P1 и P2 изогонально сопряжены относительно треугольника ABC. Докажите, что их подерные окружности (описанные окружности подерных треугольников (см. задачу 5.99)) совпадают, причем центром этой окружности является середина отрезка P1P2.
б) Докажите, что это утверждение останется верным, если из точек P1 и P2 проводить не перпендикуляры к сторонам, а прямые под данным (ориентированным) углом.
в) Докажите, что стороны подерного треугольника точки P1 перпендикулярны прямым, соединяющим точку P2 с вершинами треугольника ABC.
Прислать комментарий     Решение


Задача 56955

Темы:   [ Подерный (педальный) треугольник ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9

Даны два треугольника ABC и A1B1C1. Перпендикуляры, опущенные из точек A, B, C на прямые B1C1, C1A1, A1B1 пересекаются в одной точке. Докажите, что тогда перпендикуляры, опущенные из точек A1, B1, C1 на прямые BC, CA, AB тоже пересекаются в одной точке (Штейнер).
Прислать комментарий     Решение


Задача 56956

Темы:   [ Подерный (педальный) треугольник ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9

Дан параллелограмм ABCD. Докажите, что подерная окружность точки D относительно треугольника ABC проходит через точку пересечения его диагоналей.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .