ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника. Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.) Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
Двое играют на треугольной
доске (см. рис.), закрашивая по очереди на ней треугольные
клеточки. Одна клетка (начальная) уже закрашена перед началом
игры.
Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите высоту пирамиды. На основании AB равнобедренного треугольника ABC даны точки
A1 и B1. Известно, что
AB1 = BA1. На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1. Докажите, что
площадь одного из треугольников
AB1C1, A1BC1, A1B1C не
превосходит:
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF. В четырёхугольнике ABCD найдите такую точку E , для которой отношение площадей треугольников EAB и ECD было равно 1:2, а треугольников EAD и EBC — 3:4, если известны координаты всех его вершин: A(-2;-4) , B(-2;3) , C(4;6) , D(4;-1) . Кащей Бессмертный загадывает три натуральных числа: a, b, c. Иван Царевич должен назвать ему три числа: X, Y, Z, после чего Кащей сообщает ему сумму aX + bY + cZ, затем Иван Царевич говорит еще один набор чисел x, y, z и Кащей сообщает ему сумму ax + by + cz. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?
Собрались 2n человек, каждый из которых знаком не менее чем с n
присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить
их за круглым столом так, что при этом каждый будет сидеть рядом со
своими знакомыми (n Докажите, что произведения отрезков пересекающихся хорд окружности равны между собой. Диагонали описанной трапеции ABCD с основаниями AD
и BC пересекаются в точке O. Радиусы вписанных окружностей
треугольников
AOD, AOB, BOC и COD равны
r1, r2, r3 и r4
соответственно. Докажите, что
|
Страница: << 1 2 3 4 >> [Всего задач: 16]
Середины M и N диагоналей AC и BD выпуклого
четырехугольника ABCD не совпадают. Прямая MN пересекает
стороны AB и CD в точках M1 и N1. Докажите, что
если MM1 = NN1, то AD| BC.
Докажите, что два четырехугольника подобны тогда
и только тогда, когда у них равны четыре соответственных
угла и соответственные углы между диагоналями.
Выпуклый четырехугольник разделен диагоналями
на четыре треугольника. Докажите, что прямая, соединяющая
точки пересечения медиан двух противоположных треугольников,
перпендикулярна прямой, соединяющей точки пересечения высот двух других
треугольников.
Диагонали описанной трапеции ABCD с основаниями AD
и BC пересекаются в точке O. Радиусы вписанных окружностей
треугольников
AOD, AOB, BOC и COD равны
r1, r2, r3 и r4
соответственно. Докажите, что
Окружность радиуса r1 касается сторон DA, AB
и BC выпуклого четырехугольника ABCD, окружность радиуса r2 —
сторон AB, BC и CD; аналогично определяются r3 и r4.
Докажите, что
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке