ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.

Вниз   Решение


На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.

ВверхВниз   Решение


В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?

ВверхВниз   Решение


На плоскости даны два непересекающихся круга. Обязательно ли найдется точка M, лежащая вне этих кругов, удовлетворяющая такому условию: каждая прямая, проходящая через точку M, пересекает хотя бы один из этих кругов?
Найдите ГМТ M, удовлетворяющих такому условию.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 57165

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 2
Классы: 9

Пусть O — центр прямоугольника ABCD. Найдите ГМТ M, для которых  AM $ \geq$ OM, BM $ \geq$ OM, CM $ \geq$ OM и DM $ \geq$ OM.
Прислать комментарий     Решение


Задача 57166

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3
Классы: 9

Найдите ГМТ X, из которых можно провести касательные к данной дуге AB окружности.
Прислать комментарий     Решение


Задача 57167

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3
Классы: 9

Пусть O — центр правильного треугольника ABC. Найдите ГМТ M, удовлетворяющих следующему условию: любая прямая, проведенная через точку M, пересекает либо отрезок AB, либо отрезок CO.
Прислать комментарий     Решение


Задача 57168

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 4
Классы: 9

На плоскости даны два непересекающихся круга. Обязательно ли найдется точка M, лежащая вне этих кругов, удовлетворяющая такому условию: каждая прямая, проходящая через точку M, пересекает хотя бы один из этих кругов?
Найдите ГМТ M, удовлетворяющих такому условию.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .