ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)? Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка? Внутри треугольника ABC взята точка P. Пусть da, db и dc — расстояния от точки P до сторон треугольника, Ra, Rb и Rc — расстояния от нее до вершин. Докажите, что
3(da2 + db2 + dc2)
|
Страница: << 1 2 [Всего задач: 9]
На сторонах AB, BC, CA треугольника ABC взяты
такие точки A1 и B2, B1 и C2, C1 и A2, что
отрезки A1A2, B1B2 и C1C2 параллельны сторонам
треугольника и пересекаются в точке P. Докажите, что
PA1 . PA2 + PB1 . PB2 + PC1 . PC2 = R2 - OP2, где O — центр
описанной окружности.
Внутри окружности радиуса R расположено n точек.
Докажите, что сумма квадратов попарных расстояний между
ними не превосходит n2R2.
Внутри треугольника ABC взята точка P. Пусть da, db и dc — расстояния от точки P до сторон треугольника, Ra, Rb и Rc — расстояния от нее до вершин. Докажите, что
3(da2 + db2 + dc2)
Точки
A1,..., An лежат на одной окружности, а M —
их центр масс. Прямые
MA1,..., MAn пересекают эту
окружность в точках
B1,..., Bn (отличных от
A1,..., An).
Докажите, что
MA1 +...+ MAn
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке