ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что геометрическое место точек пересечения диагоналей
четырехугольников ABCD, у которых стороны AB и CD лежат на
двух данных прямых l1 и l2, а стороны
BC и AD пересекаются в данной точке P, является прямой,
проходящей через точку Q пересечения прямых l1 и l2.
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3 Через точку M основания AB равнобедренного треугольника ABC
проведена прямая, пересекающая его боковые стороны CA и CB
(или их продолжения) в точках A1 и B1. Докажите, что
A1A : A1M = B1B : B1M.
|
Страница: 1 [Всего задач: 3]
Точка M лежит на диаметре AB окружности. Хорда CD
окружности проходит через точку M и пересекает прямую AB под
углом в 45°.
Через точку M основания AB равнобедренного треугольника ABC
проведена прямая, пересекающая его боковые стороны CA и CB
(или их продолжения) в точках A1 и B1. Докажите, что
A1A : A1M = B1B : B1M.
Равные окружности S1 и S2 касаются окружности S
внутренним образом в точках A1 и A2. Произвольная
точка C окружности S соединена отрезками с точками A1
и A2. Эти отрезки пересекают S1 и S2 в точках B1 и B2.
Докажите, что
A1A2| B1B2.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке