Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

Вниз   Решение


На сторонах произвольного выпуклого четырёхугольника внешним образом построены квадраты. Докажите, что отрезки, соединяющие центры противоположных квадратов, равны и перпендикулярны.

ВверхВниз   Решение


Постройте образ точки A при инверсии относительно окружности S с центром O.

ВверхВниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 57882

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.
Прислать комментарий     Решение


Задача 57883

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

В треугольнике ABC проведена медиана AM. Докажите, что 2AM$ \ge$(b + c)cos($ \alpha$/2).
Прислать комментарий     Решение


Задача 57884

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 3
Классы: 9

Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.
Прислать комментарий     Решение


Задача 57885

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 4
Классы: 9

Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.
Прислать комментарий     Решение


Задача 57886

Тема:   [ Симметриия и неравенства и экстремумы ]
Сложность: 4
Классы: 9

Дана прямая l и две точки A и B по одну сторону от нее. Найдите на прямой l точку X так, чтобы длина ломаной AXB была минимальна.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .