ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Впишите в данный остроугольный треугольник ABC
квадрат KLMN так, чтобы вершины K и N лежали на сторонах AB
и AC, а вершины L и M — на стороне BC.
а) Для данного треугольника ABC, все углы которого меньше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это. У натурального числа A ровно 100 различных делителей (включая 1 и A). Найдите их произведение. На дуге BC окружности, описанной около равностороннего
треугольника ABC, взята произвольная точка P.
Отрезки AP и BC пересекаются в точке Q. Докажите,
что
1/PQ = 1/PB + 1/PC.
В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества. Прямые AP, BP и CP пересекают описанную
окружность треугольника ABC в точках A2, B2 и C2; A1B1C1 — подерный треугольник точки P относительно
треугольника ABC (см. задачу 5.99). Докажите, что
На сторонах треугольника ABC внешним образом
построены правильные треугольники ABC1, AB1C и A1BC.
Пусть P и Q — середины отрезков A1B1 и A1C1. Докажите,
что треугольник APQ правильный.
|
Страница: << 1 2 3 4 >> [Всего задач: 17]
На сторонах треугольника ABC внешним образом
построены правильные треугольники ABC1, AB1C и A1BC.
Пусть P и Q — середины отрезков A1B1 и A1C1. Докажите,
что треугольник APQ правильный.
На сторонах AB и AC треугольника ABC внешним
образом построены правильные треугольники ABC' и AB'C.
Точка M делит сторону BC в отношении BM : MC = 3 : 1;
K и L — середины сторон AC' и B'C. Докажите, что углы
треугольника KLM равны
30o,
60o и
90o.
Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так,
что
а) Для данного треугольника ABC, все углы которого меньше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
Страница: << 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке