ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В выражении  (x4 + x³ – 3x² + x + 2)2006  раскрыли скобки и привели подобные слагаемые.
Докажите, что при некоторой степени переменной x получился отрицательный коэффициент.

Вниз   Решение


Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.

ВверхВниз   Решение


В окружность радиуса 2$ \sqrt{7}$ вписана трапеция ABCD, причём её основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P, причём AP : PD = 1 : 3. Найдите площадь треугольника BPE.

ВверхВниз   Решение


Пусть углы $ \alpha$, $ \beta$, $ \gamma$ таковы, что 0 < $ \alpha$,$ \beta$,$ \gamma$ < $ \pi$ и  $ \alpha$ + $ \beta$ + $ \gamma$ = $ \pi$. Докажите, что если композиция поворотов RC2$\scriptstyle \gamma$oRB2$\scriptstyle \beta$oRA2$\scriptstyle \alpha$ является тождественным преобразованием, то углы треугольника ABC равны $ \alpha$, $ \beta$, $ \gamma$.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 57960

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.
Прислать комментарий     Решение


Задача 57961

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

На сторонах треугольника ABC построены правильные треугольники A'BC и B'AC внешним образом, C'AB — внутренним, M — центр треугольника C'AB. Докажите, что A'B'M — равнобедренный треугольник, причем $ \angle$A'MB' = 120o.
Прислать комментарий     Решение


Задача 57962

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

Пусть углы $ \alpha$, $ \beta$, $ \gamma$ таковы, что 0 < $ \alpha$,$ \beta$,$ \gamma$ < $ \pi$ и  $ \alpha$ + $ \beta$ + $ \gamma$ = $ \pi$. Докажите, что если композиция поворотов RC2$\scriptstyle \gamma$oRB2$\scriptstyle \beta$oRA2$\scriptstyle \alpha$ является тождественным преобразованием, то углы треугольника ABC равны $ \alpha$, $ \beta$, $ \gamma$.
Прислать комментарий     Решение


Задача 57963

Тема:   [ Композиции поворотов ]
Сложность: 5+
Классы: 9

Постройте n-угольник, если известны n точек, являющихся вершинами равнобедренных треугольников, построенных на сторонах этого n-угольника и имеющих при вершинах углы $ \alpha_{1}^{}$,...,$ \alpha_{n}^{}$.
Прислать комментарий     Решение


Задача 57964

Тема:   [ Композиции поворотов ]
Сложность: 5+
Классы: 9

На сторонах произвольного треугольника ABC вне его построены равнобедренные треугольники A'BC, AB'C и ABC' с вершинами A', B' и C' и углами $ \alpha$, $ \beta$ и $ \gamma$ при этих вершинах, причем $ \alpha$ + $ \beta$ + $ \gamma$ = 2$ \pi$. Докажите, что углы треугольника A'B'C' равны $ \alpha$/2, $ \beta$/2, $ \gamma$/2.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .