ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 57981

Тема:   [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9

В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
Прислать комментарий     Решение


Задача 57982

Тема:   [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.
Прислать комментарий     Решение


Задача 55764

Темы:   [ Гомотетия помогает решить задачу ]
[ Параллелограмм Вариньона ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетичные многоугольники ]
Сложность: 3+
Классы: 8,9

Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.

Прислать комментарий     Решение

Задача 53749

 [Замечательное свойство трапеции]
Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.

Прислать комментарий     Решение

Задача 57983

Тема:   [ Гомотетичные многоугольники ]
Сложность: 4
Классы: 9

Окружность S касается равных сторон AB и BC равнобедренного треугольника ABC в точках P и K, а также касается внутренним образом описанной окружности треугольника ABC. Докажите, что середина отрезка PK является центром вписанной окружности треугольника ABC.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .