ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Нарисуйте многоугольник и точку O внутри его так, чтобы ни одна сторона не была видна из нее полностью.
б) Нарисуйте многоугольник и точку O вне его так, чтобы ни одна сторона не была видна из нее полностью.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 58145  (#22.015)

Тема:   [ Теорема Хелли ]
Сложность: 6+
Классы: 9,10

Дано несколько параллельных отрезков, причем для любых трех из них найдется прямая, их пересекающая. Докажите, что найдется прямая, пересекающая все отрезки.
Прислать комментарий     Решение


Задача 58146  (#22.016)

Тема:   [ Невыпуклые многоугольники ]
Сложность: 3
Классы: 9,10

Верно ли, что любой пятиугольник лежит по одну сторону от не менее чем двух своих сторон?
Прислать комментарий     Решение


Задача 58147  (#22.017)

Тема:   [ Невыпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9,10

а) Нарисуйте многоугольник и точку O внутри его так, чтобы ни одна сторона не была видна из нее полностью.
б) Нарисуйте многоугольник и точку O вне его так, чтобы ни одна сторона не была видна из нее полностью.
Прислать комментарий     Решение


Задача 58148  (#22.018)

Тема:   [ Невыпуклые многоугольники ]
Сложность: 4
Классы: 9,10

Докажите, что если многоугольник таков, что из некоторой точки O виден весь его контур, то из любой точки плоскости полностью видна хотя бы одна его сторона.
Прислать комментарий     Решение


Задача 58149  (#22.019)

Тема:   [ Невыпуклые многоугольники ]
Сложность: 4
Классы: 9,10

Докажите, что сумма внешних углов любого многоугольника, прилегающих к меньшим 180o внутренним углам, не меньше 360o.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .