ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол C равен 90o , AC = 5 , sin A = . Найдите BC .

Вниз   Решение


Найдите  НОД(111...111, 11...11)  – в записи первого числа 100 единиц, в записи второго – 60.

ВверхВниз   Решение


Автор: Садыков Р.

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

ВверхВниз   Решение


У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

ВверхВниз   Решение


Докажите, что количество частей, на которые данные прямые разбивают плоскость, равно 1 + n + $ \sum$($ \lambda$(P) - 1), причем среди этих частей 2n неограниченных.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 58250  (#25.009.1)

Тема:   [ Плоскость, разрезанная прямыми ]
Сложность: 5
Классы: 8,9

Докажите, что при n$ \ge$3 среди полученных частей не менее (2n - 2)/3 треугольников.
Прислать комментарий     Решение


Задача 58251  (#25.010.1)

Тема:   [ Плоскость, разрезанная прямыми ]
Сложность: 5
Классы: 8,9

Докажите, что количество отрезков, на которые данные прямые разбиты точками их пересечения, равно - n + $ \sum$$ \lambda$(P).
Прислать комментарий     Решение


Задача 58252  (#25.011.1)

Тема:   [ Плоскость, разрезанная прямыми ]
Сложность: 6
Классы: 8,9

Докажите, что количество частей, на которые данные прямые разбивают плоскость, равно 1 + n + $ \sum$($ \lambda$(P) - 1), причем среди этих частей 2n неограниченных.
Прислать комментарий     Решение


Задача 58253  (#25.012.1)

Тема:   [ Плоскость, разрезанная прямыми ]
Сложность: 7
Классы: 8,9

Части, на которые плоскость разрезана прямыми. раскрашены в красный и синий цвет так, что соседние части разного цвета (см. задачу 27.1). Пусть a -- количество красных частей, b — количество синих частей. Докажите, что

a$\displaystyle \le$2b - 2 - $\displaystyle \sum$($\displaystyle \lambda$(P) - 2),

причем равенство достигается тогда и только тогда, когда красные области — треугольники и углы.
Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .