Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами со сторонами, параллельными его сторонам. Докажите, что среди них можно выбрать непересекающиеся квадраты, сумма площадей которых не меньше 1/9.
б) Площадь объединения нескольких кругов равна 1. Докажите, что из них можно выбрать несколько попарно непересекающихся кругов с общей площадью не менее 1/9.

Вниз   Решение


Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.

ВверхВниз   Решение


На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.

ВверхВниз   Решение


а) Определение (смотри в справочнике) функций gk,l(x) не позволяет вычислять их значения при  x = 1.  Но, поскольку функции gk,l(x) являются многочленами, они определены и при  x = 1.  Докажите равенство  

б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение  x = 1?

ВверхВниз   Решение


В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная?

ВверхВниз   Решение


Треугольник, составленный:  а) из медиан;  б) из высот треугольника ABC, подобен треугольнику ABC.
Каким соотношением связаны длины сторон треугольника ABC?

ВверхВниз   Решение


На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей?

ВверхВниз   Решение


Разрежьте правильный шестиугольник на 5 частей и сложите из них квадрат.

ВверхВниз   Решение


На отрезке длиной 1 расположено несколько отрезков, полностью его покрывающих. Докажите, что можно выбросить некоторые из них так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их длин не превосходила 2.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 58267  (#25.045)

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

На отрезке длиной 1 расположено несколько отрезков, полностью его покрывающих. Докажите, что можно выбросить некоторые из них так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их длин не превосходила 2.
Прислать комментарий     Решение


Задача 58268  (#25.046)

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 5-
Классы: 8,9

Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.
Прислать комментарий     Решение


Задача 58269  (#25.047)

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Дан выпуклый пятиугольник, все углы которого тупые. Докажите, что в нем найдутся две такие диагонали, что круги, построенные на них как на диаметрах, полностью покроют весь пятиугольник.
Прислать комментарий     Решение


Задача 58270  (#25.048)

Тема:   [ Покрытия ]
Сложность: 6+
Классы: 8,9

а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами со сторонами, параллельными его сторонам. Докажите, что среди них можно выбрать непересекающиеся квадраты, сумма площадей которых не меньше 1/9.
б) Площадь объединения нескольких кругов равна 1. Докажите, что из них можно выбрать несколько попарно непересекающихся кругов с общей площадью не менее 1/9.
Прислать комментарий     Решение


Задача 58271  (#25.049)

Тема:   [ Покрытия ]
Сложность: 5
Классы: 8,9

Прожектор освещает угол величиной 90o. Докажите, что в любых четырех заданных точках можно разместить 4 прожектора так, что они осветят всю плоскость.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .