ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На плоскости дано 22 точки, причем никакие три
из них не лежат на одной прямой. Докажите, что их можно
разбить на пары так, чтобы отрезки, заданные парами,
пересекались по крайней мере в пяти точках.
|
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
На плоскости дано 22 точки, причем никакие три
из них не лежат на одной прямой. Докажите, что их можно
разбить на пары так, чтобы отрезки, заданные парами,
пересекались по крайней мере в пяти точках.
Докажите, что для любого натурального N существует N точек,
никакие три из которых не лежат на одной прямой и все попарные
расстояния между которыми являются целыми числами.
Постройте замкнутую шестизвенную ломаную, пересекающую каждое свое
звено ровно один раз.
Можно ли нарисовать на плоскости шесть точек
и так соединить их непересекающимися отрезками, что
каждая точка будет соединена ровно с четырьмя другими?
Точка O, лежащая внутри выпуклого многоугольника
A1...An,
обладает тем свойством, что любая прямая OAi содержит еще одну
вершину Aj. Докажите, что кроме точки O никакая другая точка
не обладает этим свойством.
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке