Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано 22 точки, причем никакие три из них не лежат на одной прямой. Докажите, что их можно разбить на пары так, чтобы отрезки, заданные парами, пересекались по крайней мере в пяти точках.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 58289  (#26.006)

Тема:   [ Системы точек ]
Сложность: 5+
Классы: 8,9

На плоскости дано 22 точки, причем никакие три из них не лежат на одной прямой. Докажите, что их можно разбить на пары так, чтобы отрезки, заданные парами, пересекались по крайней мере в пяти точках.
Прислать комментарий     Решение


Задача 58290  (#26.007)

Тема:   [ Системы точек ]
Сложность: 6+
Классы: 8,9

Докажите, что для любого натурального N существует N точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами.
Прислать комментарий     Решение


Задача 58291  (#26.008)

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 7,8,9

Постройте замкнутую шестизвенную ломаную, пересекающую каждое свое звено ровно один раз.
Прислать комментарий     Решение


Задача 58292  (#26.009)

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 7,8,9

Можно ли нарисовать на плоскости шесть точек и так соединить их непересекающимися отрезками, что каждая точка будет соединена ровно с четырьмя другими?
Прислать комментарий     Решение


Задача 58293  (#26.010)

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5
Классы: 7,8,9

Точка O, лежащая внутри выпуклого многоугольника A1...An, обладает тем свойством, что любая прямая OAi содержит еще одну вершину Aj. Докажите, что кроме точки O никакая другая точка не обладает этим свойством.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .