ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 27. Индукция и комбинаторика
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На прямой даны точки A1, ..., An и B1, ..., Bn–1. Докажите, что = 1. Решение |
Страница: 1 2 3 >> [Всего задач: 11]
Докажите, что если плоскость разбита на части прямыми и окружностями, то получившуюся карту можно раскрасить в два цвета так, что части, граничащие по дуге или отрезку, будут разного цвета.
Докажите, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы каждые две из них имели общую точку.
Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD (A0 = A), An+1 – точка пересечения прямых EBn+1 и AB. Докажите, что AnB = AB/n+1.
На прямой даны точки A1, ..., An и B1, ..., Bn–1. Докажите, что = 1.
Докажите, что если n точек не лежат на одной прямой, то среди прямых, их соединяющих, не менее n различных.
Страница: 1 2 3 >> [Всего задач: 11] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|