Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами со сторонами, параллельными его сторонам. Докажите, что среди них можно выбрать непересекающиеся квадраты, сумма площадей которых не меньше 1/9.
б) Площадь объединения нескольких кругов равна 1. Докажите, что из них можно выбрать несколько попарно непересекающихся кругов с общей площадью не менее 1/9.

Вниз   Решение


Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.

ВверхВниз   Решение


На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.

ВверхВниз   Решение


а) Определение (смотри в справочнике) функций gk,l(x) не позволяет вычислять их значения при  x = 1.  Но, поскольку функции gk,l(x) являются многочленами, они определены и при  x = 1.  Докажите равенство  

б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение  x = 1?

ВверхВниз   Решение


В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная?

ВверхВниз   Решение


Треугольник, составленный:  а) из медиан;  б) из высот треугольника ABC, подобен треугольнику ABC.
Каким соотношением связаны длины сторон треугольника ABC?

ВверхВниз   Решение


На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей?

ВверхВниз   Решение


Разрежьте правильный шестиугольник на 5 частей и сложите из них квадрат.

ВверхВниз   Решение


На отрезке длиной 1 расположено несколько отрезков, полностью его покрывающих. Докажите, что можно выбросить некоторые из них так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их длин не превосходила 2.

ВверхВниз   Решение


Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2. Докажите, что точка пересечения прямых l1 и l2 лежит на описанной окружности треугольника A1OA2.

ВверхВниз   Решение


Треугольники ABC и A1B1C1 таковы, что их соответственные углы равны или составляют в сумме 180°.
Докажите, что в действительности все соответственные углы равны.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.

ВверхВниз   Решение


Докажите, что при инверсии с центром O прямая l, не проходящая через O, переходит в окружность, проходящую через O.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 58318  (#28.001)

Темы:   [ Свойства инверсии ]
[ Признаки подобия ]
Сложность: 3
Классы: 9,10

Пусть при инверсии с центром O точка A переходит в A', а точка B – в B'. Докажите, что треугольники OAB и OB'A' подобны.

Прислать комментарий     Решение

Задача 58319  (#28.002)

Тема:   [ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Докажите, что при инверсии с центром O прямая l, не проходящая через O, переходит в окружность, проходящую через O.
Прислать комментарий     Решение


Задача 58320  (#28.003)

Тема:   [ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Докажите, что при инверсии с центром O окружность, проходящая через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.
Прислать комментарий     Решение


Задача 58321  (#28.004)

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10

Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.
Прислать комментарий     Решение


Задача 58322  (#28.005)

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 5
Классы: 9,10,11

Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .