ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Вниз   Решение


Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 58318  (#28.001)

Темы:   [ Свойства инверсии ]
[ Признаки подобия ]
Сложность: 3
Классы: 9,10

Пусть при инверсии с центром O точка A переходит в A', а точка B – в B'. Докажите, что треугольники OAB и OB'A' подобны.

Прислать комментарий     Решение

Задача 58319  (#28.002)

Тема:   [ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Докажите, что при инверсии с центром O прямая l, не проходящая через O, переходит в окружность, проходящую через O.
Прислать комментарий     Решение


Задача 58320  (#28.003)

Тема:   [ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Докажите, что при инверсии с центром O окружность, проходящая через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.
Прислать комментарий     Решение


Задача 58321  (#28.004)

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10

Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.
Прислать комментарий     Решение


Задача 58322  (#28.005)

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 5
Классы: 9,10,11

Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .