ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На какие натуральные числа можно сократить дробь  ,  если известно, что она сократима и что числа m и n взаимно просты.

Вниз   Решение


Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?

ВверхВниз   Решение


Постройте окружность, касающуюся трех данных окружностей (задача Аполлония).

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58326  (#28.008)

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Постройте образ точки A при инверсии относительно окружности S с центром O.
Прислать комментарий     Решение


Задача 58327  (#28.009)

Темы:   [ Построение окружностей ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10

Постройте окружность, проходящую через две данные точки и касающуюся данной окружности (или прямой).
Прислать комментарий     Решение


Задача 58328  (#28.010)

Тема:   [ Инверсия помогает решить задачу ]
Сложность: 5
Классы: 9,10

Через данную точку проведите окружность, касающуюся двух данных окружностей (или окружности и прямой).
Прислать комментарий     Решение


Задача 58329  (#28.011)

 [Задача Аполлония]
Темы:   [ Построение окружностей ]
[ Инверсия помогает решить задачу ]
Сложность: 6
Классы: 9,10

Постройте окружность, касающуюся трех данных окружностей (задача Аполлония).
Прислать комментарий     Решение


Задача 58330  (#28.012)

Темы:   [ Построение окружностей ]
[ Инверсия помогает решить задачу ]
Сложность: 6
Классы: 9,10

Проведите через данную точку окружность, перпендикулярную двум данным окружностям.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .