ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки Z и W изогонально сопряжены относительно правильного треугольника ABC с центром O; M — середина отрезка ZW. Докажите, что $ \angle$AOZ + $ \angle$AOW + $ \angle$AOM = n$ \pi$ (углы ориентированы).

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 22]      



Задача 58405

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 7
Классы: 9,10

Точки Z и W изогонально сопряжены относительно правильного треугольника. При инверсии относительно описанной окружности точки Z и W переходят в Z* и W*. Докажите, что середина отрезка Z*W* лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 58406

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 7
Классы: 9,10

Точки Z и W изогонально сопряжены относительно правильного треугольника ABC с центром O; M — середина отрезка ZW. Докажите, что $ \angle$AOZ + $ \angle$AOW + $ \angle$AOM = n$ \pi$ (углы ориентированы).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .