Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке O; P и Q — произвольные точки. Докажите, что

$\displaystyle {\frac{S_{AOP}}{S_{BOQ}}}$ = $\displaystyle {\frac{S_{ACP}}{S_{BDQ}}}$ . $\displaystyle {\frac{S_{ABD}}{S_{ABC}}}$.


Вниз   Решение


Даны прямая l, окружность и точки M, N, лежащие на окружности и не лежащие на прямой l. Рассмотрим отображение P прямой l на себя, являющееся композицией проектирования прямой l на данную окружность из точки M и проектирования окружности на прямую l из точки N. (Если точка X лежит на прямой l, то P(X) есть пересечение прямой NY с прямой l, где Y — отличная от M точка пересечения прямой MX с данной окружностью.) Докажите, что преобразование P проективно.

ВверхВниз   Решение


Автор: Нилов Ф.

Окружности $\omega_1$, $\omega_2$ с центрами $O_1$, $O_2$ соответственно лежат одна вне другой. На этих окружностях взяты точки $C_1$, $C_2$, лежащие по одну сторону от прямой $O_1O_2$. Луч $O_1C_1$ пересекает $\omega_2$ в точках $A_2$, $B_2$, а луч $O_2C_2$ пересекает $\omega_1$ в точках $A_1$, $B_1$. Докажите, что $\angle A_1O_1B_1=\angle A_2B_2C_2$ тогда и только тогда, когда $C_1C_2\parallel O_1O_2$.

ВверхВниз   Решение


Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

ВверхВниз   Решение


Докажите, что преобразование P числовой прямой является проективным тогда и только тогда, когда оно представляется в виде

P(x) = $\displaystyle {\frac{ax+b}{cx+d}}$,

где a, b, c, d — такие числа, что ad - bc$ \ne$ 0. (Такие отображения называют дробно-линейными.)

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 58414

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Дано отображение прямой a на прямую b, сохраняющее двойное отношение любой четверки точек. Докажите, что это отображение проективно.
Прислать комментарий     Решение


Задача 58415

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Докажите, что преобразование P числовой прямой является проективным тогда и только тогда, когда оно представляется в виде

P(x) = $\displaystyle {\frac{ax+b}{cx+d}}$,

где a, b, c, d — такие числа, что ad - bc$ \ne$ 0. (Такие отображения называют дробно-линейными.)
Прислать комментарий     Решение

Задача 58416

Тема:   [ Проективные преобразования прямой ]
Сложность: 5
Классы: 8,9

Точки A, B, C, D лежат на одной прямой. Докажите, что если (ABCD) = 1, то либо A = B, либо C = D.
Прислать комментарий     Решение


Задача 58417

Тема:   [ Проективные преобразования прямой ]
Сложность: 6
Классы: 8,9

Даны прямая l, окружность и точки M, N, лежащие на окружности и не лежащие на прямой l. Рассмотрим отображение P прямой l на себя, являющееся композицией проектирования прямой l на данную окружность из точки M и проектирования окружности на прямую l из точки N. (Если точка X лежит на прямой l, то P(X) есть пересечение прямой NY с прямой l, где Y — отличная от M точка пересечения прямой MX с данной окружностью.) Докажите, что преобразование P проективно.
Прислать комментарий     Решение


Задача 58418

Тема:   [ Проективные преобразования прямой ]
Сложность: 6
Классы: 8,9

Даны прямая l, окружность и точка M, лежащая на окружности и не лежащая на прямой l. Пусть PM — проектирование прямой l на данную окружность из точки M (точка X прямой отображается в отличную от M точку пересечения прямой XM с окружностью), R — движение плоскости, сохраняющее данную окружность (т. е. поворот плоскости вокруг центра окружности или симметрия относительно диаметра). Докажите, что композиция PM-1oRoPM является проективным преобразованием.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .