ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну? Диаметр PQ и перпендикулярная ему хорда RS
пересекаются в точке A. Точка C лежит на окружности,
а точка B — внутри окружности, причем
BC || PQ и BC = RA.
Из точек A и B опущены перпендикуляры AK и BL на
прямую CQ. Докажите, что
SACK = SBCL.
Пусть на двух пересекающихся прямых l1 и l2
выбраны точки M1 и M2, не совпадающие с точкой
пересечения M этих прямых. Поставим в соответствие им
окружность, проходящую через M1, M2 и M.
В треугольнике ABC проведена биссектриса BE и на
стороне BC взята точка K так, что
Дана пирамида АВСD (см. рис.). Известно, что
В треугольнике ABC угол C вдвое больше угла A
и b = 2a. Найдите углы этого треугольника.
На биссектрисе угла A треугольника ABC взята
точка A1 так, что
AA1 = p - a = (b + c - a)/2, и через точку A1
проведена прямая la, перпендикулярная биссектрисе. Если аналогично
провести прямые lb и lc, то треугольник ABC разобьется на
части, среди которых четыре треугольника. Докажите, что площадь одного
из этих треугольников равна сумме площадей трех других.
Каждые два из n блоков ЭВМ соединены проводом. Можно ли каждый из этих проводов покрасить в один из n – 1 цветов так, чтобы от каждого блока отходил n – 1 провод разного цвета, если а) n = 6; б) n = 13? Точки A, B, C, D лежат на одной прямой. Докажите,
что если (ABCD) = 1, то либо A = B, либо C = D.
|
Страница: << 1 2 [Всего задач: 10]
Дано отображение прямой a на прямую b, сохраняющее двойное отношение
любой четверки точек. Докажите, что это отображение проективно.
Докажите, что преобразование P числовой прямой является проективным тогда и только тогда, когда оно представляется в виде
P(x) =
где a, b, c, d — такие числа, что
ad - bc
Точки A, B, C, D лежат на одной прямой. Докажите,
что если (ABCD) = 1, то либо A = B, либо C = D.
Даны прямая l, окружность и точки M, N, лежащие
на окружности и не лежащие на прямой l. Рассмотрим
отображение P прямой l на себя, являющееся композицией
проектирования прямой l на данную окружность из точки M
и проектирования окружности на прямую l из точки N.
(Если точка X лежит на прямой l, то P(X) есть пересечение
прямой NY с прямой l, где Y — отличная от M точка
пересечения прямой MX с данной окружностью.) Докажите,
что преобразование P проективно.
Даны прямая l, окружность и точка M, лежащая
на окружности и не лежащая на прямой l. Пусть PM —
проектирование прямой l на данную окружность из точки M
(точка X прямой отображается в отличную от M точку
пересечения прямой XM с окружностью), R — движение
плоскости, сохраняющее данную окружность (т. е. поворот плоскости
вокруг центра окружности или симметрия относительно
диаметра). Докажите, что композиция
PM-1oRoPM является
проективным преобразованием.
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке