ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что существует проективное преобразование, которое
данную окружность переводит в окружность, а данную точку, лежащую
внутри окружности, переводит в центр образа.
На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения
прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на
одной прямой (Папп).
Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Докажите, что
27Rr Начало координат является центром симметрии
выпуклой фигуры площадью более 4. Докажите, что эта
фигура содержит хотя бы одну точку с целыми координатами,
отличную от начала координат.
На бесконечном листе клетчатой бумаги N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади K.
Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A1 на прямой l1. Постройте
треугольник ABC так, чтобы точка A1 была серединой его
стороны BC, а прямые l1, l2 и l3 были серединными
перпендикулярами к сторонам.
Дано n прямых. Постройте n-угольник, для которого
эти прямые являются: а) серединными перпендикулярами
к сторонам; б) биссектрисами внешних или внутренних углов
при вершинах.
Прямые
AA1, BB1, CC1 пересекаются в одной точке O.
Докажите, что точки пересечения прямых AB и A1B1, BC
и B1C1, AC и A1C1 лежат на одной прямой (Дезарг).
Даны четыре точки A, B,
C, D. Пусть P, Q, R — точки пересечения
прямых AB и CD, AD и BC, AC и BD соответственно;
K и L — точки пересечения прямой QR с прямыми AB и CD
соответственно. Докажите, что (QRKL) = - 1
(теорема о полном четырехстороннике).
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]
Даны четырехугольник ABCD и прямая l. Обозначим через P,
Q, R точки пересечения прямых AB и CD, AC
и BD, BC и AD, а через P1, Q1, R1 — середины
отрезков, которые эти пары прямых высекают на прямой l. Докажите,
что прямые PP1, QQ1 и RR1 пересекаются в одной точке.
Даны треугольник ABC и прямая l. Обозначим
через A1, B1, C1 середины отрезков, высекаемых на прямой l
углами A, B, C, а через A2, B2, C2 —
точки пересечения прямых AA1 и BC, BB1 и AC, CC1
и AB. Докажите, что точки A2, B2, C2 лежат на одной прямой.
Даны четыре точки A, B,
C, D. Пусть P, Q, R — точки пересечения
прямых AB и CD, AD и BC, AC и BD соответственно;
K и L — точки пересечения прямой QR с прямыми AB и CD
соответственно. Докажите, что (QRKL) = - 1
(теорема о полном четырехстороннике).
Окружность пересекает прямые BC, CA, AB в точках A1 и
A2, B1 и B2, C1 и C2. Пусть la — прямая,
соединяющая точки пересечения прямых BB1 и CC2, BB2 и
CC1; прямые lb и lc определяются аналогично. Докажите,
что прямые la, lb и lc пересекаются в одной точке (или
параллельны).
Докажите, что для любого нечетного n
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке