ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что:
На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения
прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на
одной прямой (Папп).
Докажите, что
27Rr Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Начало координат является центром симметрии
выпуклой фигуры площадью более 4. Докажите, что эта
фигура содержит хотя бы одну точку с целыми координатами,
отличную от начала координат.
На бесконечном листе клетчатой бумаги N клеток
окрашено в черный цвет. Докажите, что из этого листа
можно вырезать конечное число квадратов так, что будут
выполняться два условия: 1) все черные клетки лежат в вырезанных
квадратах; 2) в любом вырезанном квадрате K площадь черных клеток
составит не менее 1/5 и не более 4/5 площади K.
Даны три прямые l1, l2 и l3, пересекающиеся
в одной точке, и точка A1 на прямой l1. Постройте
треугольник ABC так, чтобы точка A1 была серединой его
стороны BC, а прямые l1, l2 и l3 были серединными
перпендикулярами к сторонам.
Дано n прямых. Постройте n-угольник, для которого
эти прямые являются: а) серединными перпендикулярами
к сторонам; б) биссектрисами внешних или внутренних углов
при вершинах.
Прямые
AA1, BB1, CC1 пересекаются в одной точке O.
Докажите, что точки пересечения прямых AB и A1B1, BC
и B1C1, AC и A1C1 лежат на одной прямой (Дезарг).
Даны четыре точки A, B,
C, D. Пусть P, Q, R — точки пересечения
прямых AB и CD, AD и BC, AC и BD соответственно;
K и L — точки пересечения прямой QR с прямыми AB и CD
соответственно. Докажите, что (QRKL) = - 1
(теорема о полном четырехстороннике).
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]
Даны четырехугольник ABCD и прямая l. Обозначим через P,
Q, R точки пересечения прямых AB и CD, AC
и BD, BC и AD, а через P1, Q1, R1 — середины
отрезков, которые эти пары прямых высекают на прямой l. Докажите,
что прямые PP1, QQ1 и RR1 пересекаются в одной точке.
Даны треугольник ABC и прямая l. Обозначим
через A1, B1, C1 середины отрезков, высекаемых на прямой l
углами A, B, C, а через A2, B2, C2 —
точки пересечения прямых AA1 и BC, BB1 и AC, CC1
и AB. Докажите, что точки A2, B2, C2 лежат на одной прямой.
Даны четыре точки A, B,
C, D. Пусть P, Q, R — точки пересечения
прямых AB и CD, AD и BC, AC и BD соответственно;
K и L — точки пересечения прямой QR с прямыми AB и CD
соответственно. Докажите, что (QRKL) = - 1
(теорема о полном четырехстороннике).
Окружность пересекает прямые BC, CA, AB в точках A1 и
A2, B1 и B2, C1 и C2. Пусть la — прямая,
соединяющая точки пересечения прямых BB1 и CC2, BB2 и
CC1; прямые lb и lc определяются аналогично. Докажите,
что прямые la, lb и lc пересекаются в одной точке (или
параллельны).
Докажите, что для любого нечетного n
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке