ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AB четырехугольника ABCD взята
точка M1. Пусть M2 — проекция M1 на прямую BC
из D, M3 — проекция M2 на CD из A, M4 —
проекция M3 на DA из B, M5 — проекция M4 на AB
из C и т. д. Докажите, что
M13 = M1 (а значит,
M14 = M2,
M15 = M3 и т. д.).
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
На стороне AB четырехугольника ABCD взята
точка M1. Пусть M2 — проекция M1 на прямую BC
из D, M3 — проекция M2 на CD из A, M4 —
проекция M3 на DA из B, M5 — проекция M4 на AB
из C и т. д. Докажите, что
M13 = M1 (а значит,
M14 = M2,
M15 = M3 и т. д.).
Используя проективные преобразования прямой,
докажите теорему о полном четырехстороннике (задача 30.34).
Используя проективные преобразования прямой,
докажите теорему Паппа (задача 30.27).
Используя проективные преобразования прямой,
решите задачу о бабочке (задача 30.44).
Точки A, B, C, D, E, F лежат на одной окружности.
Докажите, что точки пересечения прямых AB и DE, BC
и EF, CD и FA лежат на одной прямой (Паскаль).
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке